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1 Introduction 

This note attempts to show a straightforward way to numerically calculate quantities related to 
buckets and bunches with simple codes, without either linearizing the equation of motion or looking 
up solutions in tables. The bucket and bunch are characterized by 4,, the.synchronous phase, and 
42,  one of the extreme phases of the bunch (& > &). Functions arb(4,’ 4 2 ) ,  yb(4s, 4 2 ) ,  Fa(& 4 2 )  

are introduced. Numerical algorithms used in this note are Newton’s method, Gauss quadrature and 
Chebyshev quadrature. Newton’s method is generally utilized to evaluate their inverse functions. 
Gauss quadrature is used to calculate -well behaved integrands, and Chebyshev quadrature is used 
to evaluate integrands with two integrable singularities. 

Bunch matching is also discussed, some conditions are given. 

2 Synchrotron equations and Hamiltonian 

Let a synchronous particle with charge e have synchronous energy E, (Ps and ys), synchronous 
phase q5s, angular revolution frequency wo and an energy gain eVo per turn. While eVo is greater 
than zero, acceleration is taking place; dleceleration otherwise. Consider an arbitrary RF accelerating 
voltage V(4) (see Figure 1) with angular frequency w r j  in a synchrotron with transition at ytr, where 
4 = he (mod 27i), 6 is the azimuthal coordinate of a particle around the ring and h = Wrf is the 
harmonic number. A non-synchronous particle is in general denoted as having energy E and phase q5 

whose conjugate variable is W = - - - - . The equation of motion [l] of a non-synchronous 
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particle is 

1 1 I I where 17 = - is the freqency slip1 factor. 
Ytr 7s 

The Hamiltonian [l] describing the motion of a non-synchronous particle is 
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Figure 1: Arbitrary voltage and synchronous phase. 



where Kf is the peak voltage in one turn and U(q5,dS) is the RF potential, which is expressed as 

(4) 
0 

The equation of motion and the Hamiltonian are inadequate when q approaches zero. Other 

If the Hamiltonian does not explicitly depends on time, it is a conserved system. The trajectory 
treatments are needed in that case, which are not considered in this note. 

of a non-synchronous particle lies on a, constant 7-l curve. 

3 Phase stability 

The stable fixed points of the Hamiltonian, in phase space spanned by (4, W ) ,  underlies the principle 
of phase stability, which maintains that a non-synchronous particle can make small oscillations 
around a stable phase. The fixed points of the Hamiltonian are found by solving the following 
equations 

It is apparent that the fixed points have the form (4, W )  = (+f, 0). The fixed points lie on the 4 
axis, it is sufficient to denote a fixed point by 4j. The motion in the neighborhood of the fixed 
points dictates the nature of a fixed point, specifically the eigenvalues of the following characteristic 
matrix evaluated at the fixed points determine the nature of the fixed points [2] 

0 
where V'(q5j) stands for the derivative of V with respect to 4 evaluated at the fixed point 4f, it 
follows that the two eigenvalues X1,2 can be written formally as 

The eigenvalues are either pure imaginary (complex conjugate to each other) or real, corresponding 
to elliptic fixed point or hyperbolic fixed point respectively. Elliptic fixed points are stable fixed 
points, close to which a non-synchronous particle would make small oscillations; and hyperbolic 
fixed points are unstable, from which a non-synchronous particle would move away. 

A stable region and a unstable region is divided by a separatrix, which is determined by the 
minimum Hamiltonian evaluated at two neighboring unstable fixed points 41 and 4T (q$ < 4f < 4r)  

X(#7 W )  = min(3t(4r, O ) , L F I ( 4 T ,  0)): (8) 

Particles residing in stable regions around the stable fixed points can be accelerated to raise 
their energies, which is the principle of phase stability. However, the hyperbolic fixed points have 
been employed for beam manipulation purposes. If V'(q5j) is zero, the phase stability is lost. Also 
notice that as q changes sign (transition crossing), the nature of a fixed point changes accordingly to 
equation (7), a fixed point $f changes from a stable fixed point to an unstable fixed point, and vice 
versa. An accelerating voltage with oldy stable k e d  points is not suitable to accelerate particles 

In the next section, a sinusoidal RF accelerating voltage is closely examined. The formalism 
* through transition crossing. 

developed there applies to a general accelerating voltage V(4)  as well. 
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4 Sinusoidal RF voltage 

In practice, the accelerating voltage is generally sinusoidal volt in synchrotrons 0 

where dS is the synchronous phase and is contained in a domain [O,n].In the rest of this note, 
sinusoidal RF voltage is assumed. 

Let's briefly mention how to find the synchronous phase 4s. q5s is determined by the energy gain 
per turn eV,f sin q5s and the rate of change of magnetic dipole field 6 

V,f sin 4" = cprj (10) 

where C is the circumference of the synchrotron, p is the bending radius of the magnetic dipole field. 
The Hamiltonian for a sinusoidal RF voltage can be written as 

2 
where A = - qwrf and B = - eV,f. The k e d  points are located at 

matrix evaluated at a fixed point 4 j  is 

and (-A- - bs). The characteristic 
ESP: 2nh 

The eigenvalues can be formally written as  XI,^ = &,/-. Without losing generality, as- 
sume eVTf > 0. To find the stable fixed point at which the eigenvalues are imaginary, it requires 
AB cos 4" < 0, or qcos 4" < 0. It is immediately seen that while $" is a stable fixed point, (x - dS)  
is an unstable fixed point, and vice versa. The stable fixed phase points are 0 5 4s < - for 7 < 0, 

and - < 4" 5 -A- for q > 0. 

-A- 

2 n 
2 

The Hamiltonian is invariant under the transformation 

T 
which establishes that the motion around the stable fixed phase point - < 4" 5 x and q > 0 can 
be found from the motion around the the stable fixed point (T - bs) and q < 0 by making such a 
transformation. As a result, we will concentrate on the motion around fixed phase point 0 i os < - 

2 
and q < 0,or A < 0. The unstable h e d  phase point is thus (T - 4"), and the equation of the 

2 

-A- 

-A- 7r 
Note the categorization of fixed points excludes the case when q = 0 or 4 - -. When 4 - -, 

it is rather unusual. It is a situation when a stable fixed point collapses with an unstable fixed point, 
the stable region possesses a zero area which has no practical applications. 

" - 2  s -  2 a 
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Suppose the Hamiltonian does not explicitly depends on time, so 7-l is conserved. The trajectory 
of a non-synchronous particle with initial condition (42, 0) (dS < 42 5 ii - dS)  lies on a constant 
m 5 2 , O )  

W )  = W 4 2 , 0 ) ,  (15) 
or 

1 
-AW2+Bf(45,ds,452)= 2 0, 

where the function f(4, $s, 4 2 )  is 

This is simply a function of 4 with two parameters q5s and 4 2 ,  nevertheless it plays itll important 
role in the analysis. 

One notices that for given values of sin$s and 4 2  (or a constant bunch length), the trajectory 
depends only on the ratio of a. This is to be consider in Section 7 concerning with matching. 

The other extreme phase point ($q ,O)  ( -ii 5 $1 < (bs) can be found from 
I 4  

which leads to the equation to find 4, 

cos(41) + 41 sin 4s = cos 4 2  + 4 2  sin ds. 

There are no analytic solutions for &(q5s, I&), which has a range of [-n, -). For any given values of 
#s and 4 2 ,  41 can be easily calculated by Newton’s method. 

Some other useful quantities associated with the trajectory are the area enclosed A b ( & ,  4 2 ) ,  the 
half height Hb(& 4 2 ) ,  the width 452) and the period of the trajectory Tb($hs, &). Before we 
calculate these quantities, two auxiliary functions ab(& 4 2 )  and Yb(& 452) are needed. 

ii 

2 

The following integral properly defines ab(#,, 4 2 )  

ab((&, 452) spans a possible domain [l, 0), the integration is easily done with Gauss quadrature. 
The function 4 2 )  is rather simple 

Yb(& 4 2 )  ranges in a possible domain [ l ,O) .  
The area half height H b ( $ s , 4 2 )  and width A b ( & 4 2 )  then can be written as 

where A0 = IC& and YO = 2&, both are in unit eVs. 
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The function rb((bs ,  4 2 )  is defined by 

42  1 
r b ( 4 s 3 4 2 )  = J 

41 d r n d 4 .  
Note the integrand in the definition of r b ( 4 , ,  4 2 )  has integrable singularities at #1 and 4 2 ,  Chebyshev 
quadrature is suitable in this case to carry out the numerical integration. rb tends to infinity on the 
separatrix. 

- The period T b ( # s ,  4 2 )  is 
I -  

The motion is extremely slow as 4 2  approaches to  the unstable fixed phase (T - &). 
For an arbitrary voltage V(4),  the function f($, c#,, 4 2 )  would be 

Similar functions for ab(#& 4 2 )  and rb(c$s, 4 2 )  can be defined. But yb(4s, 4 2 )  may lose its applica- 
bility. 

5 Buckets 

The region enclosed by a separatrix around a stable fixed point is called a bucket in the jargon of 
accelerator physics. For 4s = 0 or 7r, such a bucket is termed as a stationary bucket, in which a 
synchronous particle is not accelerated. For other values of q&, the bucket is c d e d  a moving bucket. 
The state of the accelerator determines the A, B and 4, which fully describe a bucket, we can 
calculate the bucket area, half height and width. 

It is known immediately that for the bucket 4 2  = T - 4s. The auxiliary functions defined in the 
above sections are generally denoted by and Y(4s) [3]. The bucket area A(&), half height 
H(q5,) and width A(q5,) are 

A(4s) = Aoa(4,), 
H ( 4 , )  = y O Y ( 4 S > ,  

A(4s) = 4 2  - 4 1 ,  
= 7r - 4 s  - 4 1 ( 4 s ) .  

For a stationary bucket, a(0) = Y(0) = 1. A0 and YO are the area and half height of a stationary 

The inverse functions a-l(q5,) and Y-l(q5,) can also be utilized to find the synchronous phase 
bucket. The bucket width is 27r. 

&. ~ ~ ' ( 4 ~ )  and Y-1(q5s) are calculated by Newton's method. 

5.1 Known bucket area A(q5,) 

Suppose it is desirable to have the bucket area A(q5,) known during an acceleration cycle, for instance 
a constant bucket area. Then, the question is: what are the programs for V, f and magnetic dipole 
field ? Before we answer this question, let's take a look at function L Y , ; ~ ( $ ~ )  defined by 

(27) 
4 4 s )  

Q s i n ( 4 s )  = ~ &G&' 

There is no general analytic solution for the inverse function a&(+,) , but it can be found numerically 
by Newton's method. 

a 
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If the magnetic field program is known, so is ]AI. From equations (26) and (lo),  we find 

The quantities on the left hand side are known, so is C X ~ ; ( + ~ ) .  Then from equation (lo), V,f can be 
determined. 

On the other hand, if the voltage ’V,f (or B )  program is known, and B (or !AI) is known at a 
particular moment t ,  what is f i  then? From equation (26) 

So Q I - ’ ( ~ ~ )  is known. Then from equation (lo), 8 is known. Hence, at the next moment t + d t  B is 
known, repeat the above process the program of magnetic dipole field program can be determined. 

6 Bunches 

In a synchrotron, particles are accelerated in bunches. To characterize a bunch in the phase space 
spanned by (4,W), we choose a particle on the perimeter of a bunch in the phase space, whose 
trajectory will encompass all other particles’ trajectories in the phase space. The formalism devel- 
oped in Section 4 is used to calculate the bunch area Ab(&&), half height Bb(f#&&) and width 

4 2 ) .  The phase space area occupied by a bunch is also termed as longitudinal emittance, it 
is an adiabatic invariant quantity. 

From equation (22), it is clear that if programs l/,f and B are predetermined, then, 4 2  is needed 
to calculate the longitudinal emittance. If somehow the bunch length Ab(&, 4 2 )  can be measured, 
then, combining it with equation (19), 4 2  can be calculated. In other words, the inverse function 
AL’(42) is numericdy calculatable for given values of Ab and ds. 

Suppose 4 2 ) ,  an adiabatic invariant, is known along with +s, the inverse function Ab1(42), 
i. e. , 4 2  can be calculated by Newton’s method. So is the bunch length Ab. 

Let’s point out some interesting results for a special case when f i  is held at a constant. The value 
of A varies as a function of ys as 

0 

It possesses an extreme point at ys = f i7ir ,  at which after transition the bucket has a minimum 
area, the bunch has a maximum bunch length. 

7 Matching 

Since the bucket is the stable region, it has to be large enough to contain a bunch. Suppose a bunch 
having half height Hb and length Ab matches in a bucket, the matching voltage Vrj then satisfies 

Other values of Vrf will distort the trajectory. 0 
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7.1 urfl = W r B  * As mentioned in Section 4, the bunch shape trajectory for fixed values of sin 4s and 4 2  (or constant 
bunch length) depends only on the ratio of . One implication of this result is to transfer bunches 
between two synchrotron. If the two synchrotrons operate at the same q5s and RF frequency u,fl = 
~ r f 2 y  then, to maintain an unperturbed bunch would require to keep the same in two synchrotrons. 
Translate it explicitly for the voltages, it is 

m 
T;rT 

where the subscripts 1 and 2 denote the sending and receiving synchrotrons respectively. The 
condition for having the same RF frequency can be expressed in terms of the circumferences C or 
radii R and the harmonic numbers in the sending and receiving synchrotrons as 

For example, it is possible to transfer unperturbed bunches between the Booster operating at h = 3 
and AGS operating at h = 12, since the circumference of the Booster is a quarter that of AGS. 

7-2 urn #urn 
Consider a bunch and two buckets, the RF frequencies of these two buckets are w T f l  to wTf2. Is it 
possible to transfer the bunch between these two buckets without disturbing the trajectory of the 
bunch? This is a situation that can happen between two synchrotrons, for instance, transferring 
bunches between the AGS and the RHIC; or in the same synchrotron, for instance, the voltage is 
operated alternatively at u,fg and u,fl . Put the question in other words, is it possible to conserve 
the equation of motion of the bunch ? 

Let’s consider transferring bunches in stationary buckets [4]. Put q5s = 0, and rewrite equation 

0 

(34) 
1 

(3) 7 

X ( 4 ,  W )  = 2AW2 + BU(4, O ) ,  

then, for a bunch with a phase point ( 4 2 ,  0), the equation of motion follows 

AW2 
+ 

U(#,O) 
2su($2,o) u(#2,0) 

= 

To switch the RF frequency from u,fl to w,f2 is to make a transformation 

w w + -  
a ’  

(35) 

where a = W r f 2 .  - To conserve the equation of motion under the transformation would demand the 

equation (35) 
W r f l  

AW2 U ( 4 ,  0) 
2a2bBU(#2,0) U(42,O) 

+ = (37) 

0 where b is a constant. A necessary condition would require that the potential U(#, 0) be a homoge- 
neous function of degree T 

U(.4,0)  = aTU(4,  01, (38) 



so the constant b is simply a'. Notice the first term in the Hamiltonian is a homogeneous function 
of degree 2 in W.  The matching condition can be written down 

QW2+' 

By examining the equation (ll), it is readily concluded that the potential term for a sinusoidal 
accelerating voltage is not a homogeneolus function of any sort. In general, it is impossible to transfer 
bunches between two synchrotrons operating at different RF frequencies without disturbing the 
trajectory of bunclies. It is inevitable that the process itself will blow up the longitudinal emittance. 
The best strategy rests on finding a voltage to minimize the longitudinal emittance blow-up [5], 
which is consider later in this section. 

Let's consider the same situation in a slightly different context, in which the bunch length is 
small in both buckets. In this case, the Hamiltonian, namely the equation (11) can be linearized 
around dS 

X(g5,W) = -AFT2 + -Bq52. 

The potential term is clearly a homogeneous function of degree 2 ( T  = 2). A perfect matching can 
indeed succeed. 

The condition for a perfect matching of a short bunch comes from equation (39) expressed in a 
form with explicit dependency on V,j is 

(40) 
1 1 
2 2 

One possible solution to match a bunch perfectly in two buckets with different RF frequencies 0 
is to make the bunch short, so that it falls in the linear regions in both buckets. However, a short 
bunch probably may have some other unpleasant features. If these two frequencies are identical, 
then, the condition above reduces to equation (32); the most general case. 

Although these matching conditions are derived under the assumption that & = 0, they are also 
valid for transferring a bunch from a ds = 0 bucket to a rjs = T bucket, and vice versa. 

Let's consider the more general question to  minimize the emittance blow-up (or filamentation). 
For the sake of simplicity, we consider transferring a bunch in two stationary buckets below transi- 
tions. The bunch equation in the first bucket satisfies 

where ut2 = 4 2 ,  the right extreme phase point. An arbitrary point (ti, AE;) on the trajectory, then, 
satisfies the following equation 

where t i2  = t2 .  The arbitrary point (ti, AE;) also satisfy the above equation at the instant the bunch 
is transferred into the second bucket. 

The Hamiltonian for the bunch in the second stationary bucket is 
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and a = - WTf2.  After a new equilibrium distribution settles down, the arbitrary A E  where W2 = - 

point (ti, AE;) will satisfy 
wTf2 W T f l  c 

Note uTj2ti2 must be less than 7r for the above equations to be true. 
In the first bucket, the extreme point (ti2,O) on the bunch moves to the half height point 

(O,AE;,,,) in a quarter of a synchrotron period (see Figure 2). Let’s find out what the volt- 
age in the second bucket should be in order to accomplish the same action. This voltage is the 
lowest voltage, denoted as B ~ L ,  that will make the bulk of the bunch not engage in the process of 
filamentation. We will call it a nominal matching voltage. The condition is readily found out as 
follows 

(46) 
B2u:f2 - Blw:fl1- cos(wTflti2) --- 

IA21 ]All 1 - cos(urj2h) a 

However, any other points, say, (t;,AE;) will spread out to make the emittance larger. For short 
bunches (small t;2), we can expand the right hand side of the above equation, it recovers to equation 

Let’s find the point (+;,AEi) whose final trajectory covers the largest area at a given voltage 
(41)- 

(B2 > B ~ L ) ,  the trajectory contains all the other trajectories: In other words, we need to have 

(47) 
dAE - dAE; --- 

at dti ’ ’ which states that the new trajectory in the second bucket is tangential to the trajectory in the first 
bucket at that point (ti, AE;), and from which we have 

which recovers to equation (41) for short bunches. As expected that for short bunches all points on 
the perimeter of the bunch in the first bucket are equivalent, they all lie on the same trajectory in 
the second bucket. This equation can also serve to find a voltage, denoted as B ~ M ,  above which the 
bunch length measured in time is conserved, if we choose ti = ti2. 

To find an optimal voltage ( B ~ L  < B2 < B ~ M ) ,  we first choose the point (t;,AEi) determined 
by equation (48). Then, we find that the emittance S will be 

22 
S = 2 / AE2dt 

where uTj2t2 = 4 2 ,  the bunch’s extreme phase point in the second bucket, note that t i 2  is that in 
the first bucket. The minimum emittance, then, is determined by the extreme condition 

(50) 
dS - = 0. 
dB2 

This equation can not be written down as an analytic function. Numerical method has to be 
employed to find the optimal voltage. 
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Figure 2: Bunch shape in the first synchrotron (in solid line). Ph&e trajectory of point ( t i z , O )  in 
the second synchrotron to find the nomiinal matching voltage (in dash line). 
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8 Conclusions 

The author finds it is convenient to characterize a bunch and a bucket by ds and 4 2  (& = T - dS in 
a bucket). Then, the task of evaluating a bunch or a bucket area, half height, length and period is 
reduced to evaluate some well defined functions. The inverse functions are computed by Newton's 
method. Perfect matching is examined, and is always possible for two synchrotrons operating at the 
same RF frequencies. Perfect matching of short bunches can be realized for different W freqencies, 
but is impossible for long bunches. Conditions for minimizing the blowup of emittance, and conserve 
the bunch length are given. 

Acknowledgment 

The author would like to take this opportunity to thank fruitful and stimulating discussions with 
J. M. Brennan, R. A. Thomas, E. C. Raka and J. M. Kats. 

References 

[l] A. Hofmann and F. Pedersen. Bunches with local elliptic energy distributions. In IEEE Trans. 
Nucl. Sci. Vol. NS-26, No. 3, page 3526, June 1979. 

[a] I. Percival and D. Richards. Intr&ction to dynamics, chapter 3. Cambridge University Press, 
1982. 

[3] I. Gumowski. Width, height and area. MPS/Int. RF 67-1, CERN, 1967. 

[4] The discussion is also valid for transferring a bunch from c,bS bucket to u& bucket. 

[5] J. M. Brennan proposed this scheme. 

0 

12 


